Inicio Artículos de fondo Acopladores para aislar elevadas tensiones en baterías Li-ion de vehículos eléctricos (I)

Acopladores para aislar elevadas tensiones en baterías Li-ion de vehículos eléctricos (I)

361
0

Artículo escrito por Andy Poh, Responsable de Marketing de Producto de Avago Technologies Inc.

Optoacoplador ACPL-M43T

Introducción
Las tareas de gestión del stack de batería litio-ion (Li-ion) de elevada tensión se enfrentan a grandes retos en vehículos eléctricos (EV) e híbridos (gasolina / electricidad).

Los ciclos de carga y descarga deben ser monitorizados y controlados, mientras que el stack de batería, que suele desarrollar tensiones de varios cientos de voltios, tiene que ser aislado para cumplir los estándares de seguridad.

En particular, este artículo analizará los requerimientos de monitorización de pilas Li-ion y revisará la arquitectura y los componentes usados en los subsistemas de control de batería y comunicaciones digitales y en el interface de aislamiento.

En el sistema de gestión, la tarjeta de seguimiento de batería usa dos elementos esenciales para monitorizar (con la máxima fiabilidad) el estado de la pila y entregar resultados digitales a un procesador host que dirige la operación.

Separando estos subsistemas, un interface de señal que emplea aislamiento entre la circuitería de sensado de batería de alto voltaje y los dispositivos de comunicación en las tarjetas garantiza que estas tensiones elevadas no afectan al subsistema digital.

Características de la pila Li-ion

El sofisticado sistema electrónico demandado para cumplir los requerimientos de rendimiento, seguridad y fiabilidad en vehículos eléctricos “proviene” de las propias características de la pila Li-ion.

En una pila Li-ion de descarga, el litio se suele ionizar en un ánodo de grafito y los iones se mueven hacia un electrolito para “atravesar” un separador y llegar a un cátodo, provocando un flujo de carga. El proceso de carga invierte el flujo, “trayendo” los iones de litio desde el cátodo (a través del separador) al ánodo.

El rendimiento y la fiabilidad de este proceso químico dependen de la temperatura y de la tensión de la pila. Con bajas temperaturas, la reacción se ralentiza y el voltaje se reduce. Cuando la temperatura aumenta, el ratio de reacción se incrementa hasta que los componentes de la pila de Li-ion comienzan a colapsarse.

Por ejemplo, con una temperatura superior a +100 °C, el electrolito empieza a colapsarse y libera gases que pueden ejercer presión a la hora de diseñar celdas sin mecanismos pressure-relief.

Con temperaturas suficientemente altas, las pilas Li-ion pueden experimentar una fuga térmica si los óxidos se colapsan, liberando oxígeno, que también contribuye a acelerar el aumento de temperatura.

Por consiguiente, mantener unas condiciones operativas óptimas de las celdas de Li-ion supone un requerimiento crítico en el sistema de gestión de batería. El desafío en el proceso de diseño del sistema de control / gestión es garantizar la recopilación y el análisis de datos fiables para monitorizar el estado de las pilas de Li-ion en el vehículo, un problema por la propia naturaleza de las propias celdas.

En un EV, como el Chevy Volt, el pack de batería contiene 288 celdas de Li-ion prismáticas, que se dividen en 96 grupos batería-celda conectados para desarrollar una tensión de sistema de 386.6 Vdc. Estos grupos se combinan con sensores de temperatura y elementos de refrigeración en cuatro módulos de alimentación.

Las líneas voltage-sense acopladas a cada grupo de celdas terminan en un conector en la parte superior del módulo de batería, mientras que un arnés voltage-sense une el conector a un módulo de interface de batería.

Aquí, los cuatro módulos de interface de batería codificados por colores operan en diferentes posiciones del stack de batería, que se corresponden con los rangos de baja, media y alta tensión de offset de tensión dc.

Los datos desde los módulos de interface de batería se mueven upstream hacia el módulo de control de energía. Este módulo, en cambio, envía información de condiciones de fallo, estado y diagnóstico al módulo encargado del control powertrain híbrido que, a su vez, funciona como controlador host para tareas de diagnóstico del vehículo. En cualquier momento, el sistema ejecuta más de quinientos análisis cada décima de segundo, de los que el 85 por ciento se centran en la seguridad del pack de batería, y el resto se ocupa del rendimiento y de la duración.

Cada una de las cuatro PCB de módulo de control de interface de batería en el Chevy Volt combina circuitos de sensado con circuitería de comunicaciones CAN aislada por optoacopladores que se ubican en el borde del subsistema de comunicaciones.
Cada una de las cuatro PCB de módulo de control de interface de batería en el Chevy Volt combina circuitos de sensado con circuitería de comunicaciones CAN aislada por optoacopladores que se ubican en el borde del subsistema de comunicaciones.

Tarjeta multicapa

El análisis downstream de las prestaciones de la batería comienza con el módulo de control de interface, como el usado en el Chevy Volt (Figura 1). Diseñada para aportar elevada integridad de señal, esta PCB de cuatro capas combina técnicas trace-layout, aislamiento y planos de tierra.

La capa superior incluye la mayoría de componentes, como aislantes ópticos, un plano de tierra y trazas de señal con múltiples vías que ofrecen conexión al resto de capas. En la segunda, los planos de potencia y tierra se “extienden” bajo las zonas de elevada tensión de la PCB, y la tercera contiene trazas de señal que “pasan” por debajo de las áreas antes mencionadas. El otro lado de la tarjeta de circuito impreso (cuarta capa) se emplea para el plano de tierra y las trazas de señal, así como para algunos componentes adicionales.

Continúa en Acopladores para aislar elevadas tensiones en baterías Li-ion de vehículos eléctricos (II)